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Abstract—Implementation of the least absolute deviations method for robust estimation of
linear regression dependencies by means of interior point algorithms is considered. Two affine
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tive analysis of these algorithms with simplex method and descent along nodal straight lines is
carried out. Their computational complexity is found to be comparable to the simplex method,
but they lose to the latter in terms of computation time. It is also found that the interior point
algorithms significantly lose to the modified descent along nodal straight lines, both in terms
of computational complexity and actual computation time. Examples of using interior point
algorithms for practical problems are given.
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1. INTRODUCTION

Multiple linear regression is one of the widely used mathematical models in various fields of
study. It takes the following form

y = Xα+ ε,

where y =

⎛⎜⎜⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎟⎟⎠, X = (X1, . . . ,Xm) =

⎛⎜⎜⎜⎜⎝
1 x12 · · · x1m
1 x22 · · · x2m
...

...
. . .

...
1 xn2 · · · xnm

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
xT1
xT2
...
xTn

⎞⎟⎟⎟⎟⎠, α =

⎛⎜⎜⎜⎜⎝
a1
a2
...
am

⎞⎟⎟⎟⎟⎠, ε =

⎛⎜⎜⎜⎜⎝
ε1
ε2
...
εm

⎞⎟⎟⎟⎟⎠.

Here y is the vector of dependent variable values Y ; X = {xij}n×m is the matrix of explanatory
variable values X1, . . . ,Xm, xTi = (1, xi2, . . . , xim); α is the vector of unknown coefficients aj of the
regression equation, and ε is the vector of unobserved random deviations.

Traditional linear regression analysis dates back to the works of A.M. Legendre (1806) and
C.F. Gauss (1809), in which they independently presented their versions of the least squares method
(OLS), and the works of A.A. Markov a century later, in which the theoretical foundations were
outlined. These premises define the requirements for variables Xi, parameters α, and random

266
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deviations ε, and allow for the investigation of properties and statistical content of the regression
coefficient estimates [1].
1◦) There are no constraints on the vector α, i.e., A = R

m, where A is the set of a priori values of
the parameters α;
2◦) The matrix X is deterministic, i.e., xij are not random variables;
3◦) rank(X) = m < n;
4◦) The vector ε is random, i.e., the vector y is also a random vector;
5◦) The expected values are E(εi) = 0, i = 1, . . . , n, E(ε) = 0;
6◦) ∀i �= k cov(εi, εk) = 0, ∀iE(ε2i ) = σ2, i, k = 1, . . . , n, where σ2 is the variance of deviations.

The last two assumptions concern the properties of random deviations. Since εi are unobservable
and their properties are unknown a priori, the choice of method for estimating the parameters of α
is ambiguous. If the distribution of deviations ε does not depend on X and is normal, then the
OLS provides best estimate of the α̃ regression coefficients [2].

However, it is not possible to assume a priori the normality of random deviations, as in many
cases the actual distributions can differ significantly and have more elongated tails compared to
the normal law, which reduces the accuracy of OLS estimates of the regression coefficients [3–6].
The situation is particularly critical for OLS when observations are “contaminated” by relatively
rare outliers or misses that violate the 5◦ and 6◦ assumptions [2]. Contamination can occur, for
example, in the development of degradation processes during the operation of mechanical and other
loaded systems [7]. The random component of the vibration signal can be 10–20% contaminated
by noise in the form of impulses, sharp level changes or correlation structure, leading to “heavier”
tails of the distribution relative to the normal law [3].

In these cases, other methods are required to ensure stability of the estimates. The most well-
known of these is the method of least absolute deviations (LAD) [8]. However, the LAD and
other robust methods lose out to the performance of OLS in many applications, especially when
analysing large samples or real-time data [3, 9]. This limits the applicability of regression analysis
for these applications under conditions of stochastic heterogeneity of the data, when the OLS
does not provide stability of model parameter estimation. Therefore, the task of increasing the
computational efficiency of robust regression modelling algorithms is relevant.

The approach discussed is commonly referred to as a “passive” experimental model, where
factors exist only in the form of controlled but not fully manageable input variables. The task of
planning is reduced to the optimal organisation of information collection and selection of a method
for processing the measurement results. The main disadvantages are that the range of factor
changes is limited, and the influence of disturbing parameters may turn out to be more significant
than the change in controlled factors.

It should be noted that if it is possible to influence the course of the process and to choose the
factor levels in each test, then it is preferable to use an “active” experiment. The foundations of
estimation theory were laid by R. Fisher in 1937 in his book The Design of Experiments. This
extends the traditional regression model. In an active experiment, certain interventions are ap-
plied to the input of object under study, which are planned in advance according to some optimal
criterion. In the last 50 years, schemes under the random nature of the regressor set X have been
actively investigated. In the works of O.N. Granichin, B.T. Polyak, A.B. Tsybakov, M.C. Campi,
Lei Guo, L. Ljung, and others, randomisation in the selection of regressors allowed for the formu-
lation of faster algorithms and the study of their consistency when traditional assumptions about
disturbances are not fulfilled [10–13]. It should be noted that active experiment allows to solve
research problems faster and more efficiently, but it is not always realisable, is more complex and
costly, and may interfere with the normal course of the technological process.

In the following section of the article, we will consider the passive experiment variant.
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268 GOLOVANOV, TYRSIN

The task of estimating a multiple linear regression relationship on a data sample (xTi , yi), i =
1, . . . , n, using LAD is of the form [14]:

Q(a) =
n∑

i=1

∣∣∣∣∣∣yi −
m∑
j=1

aixij

∣∣∣∣∣∣ → min
a∈Rm

, (1)

where a = (a1, . . . , am)T is the vector of unknown coefficient estimates aj of the regression equation
Y = a1 + a2X2 + · · ·+ amXm + ε.

One way to determine the parameters of a is to reduce (1) to a linear programming (LP)
problem and solve it using the simplex method [14]. The computational efficiency of the simplex
method for solving problem (1) was investigated in [15] and was found to be insufficient for dynamic
applications.

An alternative to the simplex method for solving LP problems are interior point methods. These
methods were originally used to solve nonlinear problems. In the context of LP problems, interior
point methods explicitly or implicitly use a barrier on the feasible set in the form of a non-negative
orthant. Unlike the simplex method, a sequence of points is generated for which the constraint
inequalities are strictly satisfied.

The set of existing interior point methods can be conditionally divided into polynomial and affine
scaling methods. The first algorithm based on affine scaling was proposed in 1967 by I.I. Dikin [16].
However, interior point methods gained widespread popularity in 1984 after the article by N. Kar-
markar [17], in which a polynomial algorithm based on projective transformations was described.
However, it was found that gradient-type optimisation methods with using affine scaling trans-
formations were more efficient. The interior point methods based on projective transformations
have [18, 19]
— complexity strongly depends (grows) on dimensionality of the problem being solved;
— iterations require higher computational costs compared to optimisation methods using affine
scaling transformations;
— many polynomial algorithms are difficult to apply for a wide range of problems due to the
necessity of finding an initial approximation.

This direction is being developed by many researchers, see works [20–23]. The history of interior
point methods is described in [19].

The objective function Q(a) in (1) is continuous, convex and bounded below, which guarantees
the existence of a single minimum. However, problem (1) has specific features. First, the func-
tion Q(a) has a number of kinks in the form of line segments. The walls of kinks represent convex
linear faces. As the minimum is approached, geometry of the function Q(a) deteriorates — the walls
of kinks become more and more shallow and almost parallel, which complicates the convergence of
algorithms near the minimum.

Secondly, the LP problems corresponding to (1) have high dimensionality.

No specific study of interior point methods for application to the class of LP problems corre-
sponding to (1) has been found in the literature. Since many authors note that in practice interior
point methods can compete with the simplex method [19], it seems reasonable to conduct a com-
parative analysis of the computational efficiency of interior point methods with other well-known
exact methods for solving problem (1).

An algorithm is considered exact if it allows finding the global minimum of the function Q(a) in
a finite number of iterations. Calculations are performed with errors, and the technique of error-
free calculations is very time-consuming, so we take as an exact solution the one that is computed
with minimal computational errors. Among the exact ones we will include the LAD estimation
algorithms based on solving the LP problem using the simplex method [7, 24, 25] and the descent
along nodal straight lines algorithms [26, 27].
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It should be noted that a number of other algorithms based on the LP problem are known,
for example, algorithms that use at each iteration the fundamental operation of finding weighted
medians over the local set of basis solutions [28–30]. Their complexity for solving problem (1) is
comparable to the simplex method.

2. RESEARCH METHODS

Let us form an equivalent to (1) LP problem. We represent each residual yi −∑m
j=1 ajxij as

0 �

∣∣∣∣∣∣yi −
m∑
j=1

ajxij

∣∣∣∣∣∣ � zi, i = 1, . . . , n.

Hence we obtain the system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
zi +

m∑
j=1

ajxij � yi, i = 1, . . . , n,

zi −
m∑
j=1

ajxij � −yi, i = 1, . . . , n,

and, by denoting aj = a
(1)
j − a

(2)
j , we can formulate the primal LP problem as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

zi → min
a
(k)
j ,zi∈R

,

zi +
m∑
j=1

(a
(1)
j − a

(2)
j )xij � yi, i = 1, . . . , n,

zi −
m∑
j=1

(a
(1)
j − a

(2)
j )xij � −yi, i = 1, . . . , n,

a
(k)
j , zi � 0, k = 1, 2,

(2)

or in matrix form ⎧⎪⎪⎨⎪⎪⎩
bTỹ → min,

Aỹ � C,

ỹ � 0,

(3)

where bT = (

n︷ ︸︸ ︷
1, 1, . . . , 1,

2m︷ ︸︸ ︷
0, . . . , 0) is a vector of size 1× (n+ 2m), ỹ is a vector of objective function

values of size (n+2m)× 1, C is a vector of right-hand side constraints of size 2n× 1, A is a matrix
of non-basic variable coefficients of size 2n× (n+ 2m).

Next, we consider interior point algorithms with affine scaling transformations, taking into
account the aforementioned advantages over polynomial ones. Significant among them are I.I. Dikin
[16] algorithm (algorithm B), which is essentially the progenitor of corresponding algorithms group,
and its modification — V.I. Zorkaltsev [20] algorithm (algorithm A). Both algorithms combine the
features of solving mutually dual LP problems:

cTx → min, Ax = b, x � 0;

bTu → max, g(u) � 0, g(u) = c−ATu,

where the matrix A of size n×m, vectors c ∈ R
m, b ∈ R

n are given. Vectors x ∈ R
m and u ∈ R

n

are task variables.
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270 GOLOVANOV, TYRSIN

2.1. Affine-Scaling Algorithm A

Let us describe the algorithm for solving the problem.

Step 1. At the kth iteration, we compute the vector of constraint-equality residuals, where x(0)

is any vector with positive components

r(k) = b−Ax(k), k = 0, 1, 2, . . . .

Step 2. Forming a matrix of weigh coefficients

Dk = diagd(k),

where d
(k)
j is defined according to [20]. Then d

(k)
j = (x

(k)
j )p, j = 1, . . . ,m for a given p � 1. More-

over, for p > 1 the additional condition 0 < γ � 2/(p + 1) is required.

Step 3. Computing the vector of variables u ∈ R
n

u(k) = (ADkA
T)−1(r(k) +ADkc).

Step 4. Finding the direction and step of the solution adjustment

s(k) = −Dkg(u
(k)),

λk = min{1, λ̄k}, if r(k) �= 0,

λk = λ̄k, if r(k) = 0,

where λ̄k = γmin{−x
(k)
j /s

(k)
j : s

(k)
j < 0}.

If s(k) � 0 when r(k) �= 0, then we set λk = 1. Depending on the required accuracy when

maxj=1,...,m

∣∣∣s(k)j

∣∣∣ ≈ 0 exit the algorithm, otherwise go to Step 5.

Step 5. Performing an iterative transition

x(k+1) = x(k) + λks
(k),

r(k+1) = (1− λk)r
(k).

Proceed to Step 2.

The exact solution is defined as the achievement of s(k) = 0, where each subsequent x(k) will not
change. However, in practice, only a certain value within an infinitesimally small neighbourhood
of δ near zero is achieved, which varies depending on the development environment and the variables
used in it. Thus, to avoid uncontrolled growth of the algorithm’s runtime and to ensure uniformity
regardless of the implementation tools, it is necessary to limit the accuracy of algorithm until a
certain decimal place is reached.

Remark 1. When r(k) = 0, for each subsequent iteration, optimisation within the feasible region
is performed

r(k+1) = 0, cTx(k+1) < cTx(k).

Let us consider a problem with equality constraints for a square matrix A, where the vector
of inequalities constraints r(k) = 0 reaches zero at the current iteration. Then, according to the
formula of Step 3, we obtain u(k) = (ADkA

T)−1(ADkc). Let us simplify the expression by replacing
ADk = B, resulting in u(k) = (BAT)−1(Bc). According to the properties of inverse matrix, we have
(BAT)−1 = (AT)−1B−1. Let us expand the brackets and, using the associativity of matrix mul-
tiplication, compute the vector of variables u ∈ R

n, u(k) = (AT)−1B−1Bc = (AT)−1Ec = (AT)−1c.
Then g(u(k)) = c−ATu(k) = c−AT(AT)−1c = c− Ec = 0. Hence, at the current iteration s(k) =
−Dkg(u

(k)) = 0 and a solution of the linear algebraic equation system (SLAE) has been reached so
no further optimisation is required.
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Remark 2. The direction vector s(k) is defined by solving the auxiliary problem

cTs+ 1/2 sTD−1
k s → min, As(k) = r(k).

Therefore, As(k) = b−Ax(k), s(k) = A−1(b−Ax(k)).

Thus, the special case for the matrix A with nonzero determinant can be solved by skipping
Steps 2 and 3, reducing computational complexity and the impact of accumulated errors, which is
especially useful when the analysed sample increases.

A number of computational experiments were carried out as part of the study, let us consider
some of them.

Example 1. Let us solve the LP problem with a rectangular matrix A: F = min(2x1 − x2);
x1 + x2 = 2; xi � 0, i = 1, 2 [31]. The optimal solution is x = (0; 2), Fmin = −2. As a initial point
we will use x(0) = (7; 1). Due to the rectangular form of the matrix, Remark 2 cannot be applied.

At the first iteration, the vector of inequality constraints will be equal to r(1) = −6. For p = 2 the
vector of weight coefficients d(1) = (49; 1) with γ = 0.67, whence u(1) = 1.82. Next, having defined
the vector g(u(1)) = (0.18;−2.82), we will find the direction and step of the solution adjustment
s(1) = (−8.82; 2.82), λ1 = 0.53. Thus, after the iterative transition we obtain x(2) = (2.33; 2.49)
and r(2) = −2.83. At the fifth iteration λ5 = 1, so r(6) = 0. Since the number of model parame-
ters exceeds the number of observations and inverse of the matrix A cannot be found due to it’s
determinant being zero, optimisation can be performed within the feasible region. Thus, λ6 = 3.5
and x(6) = (0.02; 1.98). Continuing the optimisation, we obtain the solution of Example 1, which is
approximately x1 ≈ 0, x2 ≈ 2 with Fmin ≈ −2 at the given accuracy of 10−8, which corresponds to
the global minimum of the problem. The solution does not change depending on the initial point.

Example 2. Let us expand the matrix to a square matrix: F = min(x1 + 3x2 + 2x3);
5x1 + 4x2 + 7x3 = 3; 6x1 + 3x2 + 2x3 = 2; x1 + 2x2 + 3x3 = 1; xi � 0, i = 1, 2, 3. The mini-
mum will be equal to Fmin = 0.75 with x = (1/4; 0; 1/4). We will set the initial point as
x(0) = (1; 1; 1). Since the matrix A is square and its inverse can be calculated, we will use Re-
mark 2: r(1) = (−13;−9;−5); s(1) = (−0.75;−1;−0.75); λ1 = 0.67. Then x(2) = (0.5; 0.33; 0.5) and
r(2) = (−4.33;−3;−1.67). The vector of equality constraints r became zero on the 12th itera-
tion, with solution x(12) ≈ (0.25; 0; 0.25) and Fmin ≈ 0.75. Indeed, since the matrix A is invertible,
s(12) = 0 and the solution of SLAE has been reached, no further optimisation is required.

Example 3. Let us modify the problem so that its global minimum is not equal to the solution of
SLAE by introducing inequality constraints in Example 2: F = min(x1 + 3x2 − 2x3); 5x1 + 4x2+
7x3 � 3; 6x1 + 3x2 + 2x3 � 2; x1 + 2x2 + 3x3 � 1; xi � 0, i = 1, 2, 3. In this case, the minimum
will be reached at x = (0; 0; 1/3) and will be equal to Fmin = −2/3. To take into account the
inequality constraints, we will extend the matrix A with an identity matrix of size 3× 3. As a
result of the algorithm’s operation, with a given accuracy 10−8 the solution x(24) ≈ (0; 0; 0.3) and
Fmin ≈ −0.66 was found after 24 iterations, which corresponds to the global minimum.

Statement 1. The computational complexity of the primal affine scaling algorithm A for solving
the given problem (2) will be O(n3,1).

The results indicate that the algorithm is capable of formally reaching an exact solution in a
finite number of iterations. However, due to the exponential growth of the algorithm running time
as the desired accuracy approaches zero, its application for a series of experiments with a sufficiently
large number of observations (n � 50) becomes problematic.
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2.2. Affine-Scaling Algorithm B

The solution of dual LP problem will be the vector u, that satisfies the system of equations [16]

n∑
t=1

bstut = ds,

where bst =
∑m

j=1 x
2
jasjatj , ds =

∑m
j=1 x

2
jcjasj, s = 1, . . . , n.

Let us assume

Φ(x) =
m∑
j=1

x2j

(
n∑

i=1

aijui(x)− cj

)2

, sj(x) = x2j

(
n∑

i=1

aijui(x)− cj

)
.

The solution algorithm is as follows. Let x
(0)
j > 0. Then x

(k+1)
j = x

(k)
j + λksj(x

(k)), where λk =

1/
√
Φ(x(k)) at j = 1, . . . ,m. The computation check at each iteration is based on the condition

fulfilment [31]

m∑
j=1

cjσ
(k)
j δ

(k)
j = −Φ(x(k)), (4)

where σ
(k)
j = (x

(k)
j )2, δ

(k)
j =

∑n
i=1 aiju

(k)
i − cj at j = 1, . . . ,m.

The solutions of Examples 1–3 using the described method are exact, regardless of the initial
point x(0) > 0. Let us consider an additional example.

Example 4. F =min(3x1+2x2+x3); x2+x3 � 4; 2x1+x2+2x3 � 6; 2x1−x2+2x3 � 2; xi � 0,
i = 1, 2, 3. The exact solution is F = 4 in x = (0; 0; 4) for the primal LP problem and y = (1; 0; 0) for
the dual. We will present the results for the first and last iterations of the algorithm. At the first

iteration we obtain B(1) =

⎛⎜⎝3 3 1
3 10 7
1 7 10

⎞⎟⎠, d(1) = (3; 10; 6), whence u(1) = (−0.12; 1.19;−0.22) and

Φ(x(1)) = 3.78. The calculation with a accuracy of 10−8 was completed in 15 iterations with the

results: B(15) =

⎛⎜⎝5 8 8
8 16 16
8 16 20

⎞⎟⎠, d(15) = (4; 8; 8), whence u(15) = (0; 0.5; 0) and Φ(x(15)) = 4.5× 10−8

with the solution Fmax ≈ 3, which does not correspond to the exact solution, although condition (4)
was satisfied at each iteration.

As a result of a series of computational experiments related to solving the given problem (2), it
was found that the solution using algorithm tends to zero. This may be a consequence of the failure
to satisfy the condition in [32], according to which all inequality constraints must be satisfied in
strict form. Nevertheless, determining dependence of the average computation time on the sample
size is impossible due to the lack of method convergence.

Statement 2. The computational complexity of one iteration of the primal affine scaling algo-
rithm B for solving the given problem (2) will be O(n3), which is comparable to algorithm A con-
sidering the number of iterations.

The gradient descent along nodal straight lines algorithm is described in [26]. It consists of the
following. Let us consider an mdimensional Euclidean space R

m with standard orthonormalised

basis {e1, . . . , em}, where eTk = (

k−1︷ ︸︸ ︷
0, . . . , 0, 1,

m−k︷ ︸︸ ︷
0, . . . , 0). Each non-degenerate observation (xTi , yi) =
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ROBUST REGRESSION MODELLING 273

(1, xi2, . . . , xim, yi), i = 1, . . . , n, forms in R
m a hyperplane Ωi : yi − aTxi = 0 in the orthogonal

coordinate system Oa1...am. The intersection of m independent hyperplanes forms a nodal point

u = ∩s∈MΩS, M = {k1, . . . , km}, k1 < k2 < · · · < km, kl ∈ {1, . . . , n}.

The intersection of (m− 1) independent hyperplanes forms a nodal straight line

l(k1,...,km−1) : ∩Ωi, i ∈ {k1, . . . , km−1}, kl ∈ {1, . . . , n}.

The solution to problem (1) is always at a nodal point. The algorithm performs a descent from
an arbitrary initial nodal point along nodal straight lines. Any nodal point is the basic solution
of the LP problem. The advantage over the simplex method lies in the fact that transition along
nodal line is more efficient, because, unlike the simplex method, at each step of the transformation
only n points located on the corresponding nodal line are involved, rather than all the data. In ad-
dition, at each step, the descent is performed to the point with minimum value among all m nodal
lines intersecting it.

To reduce computational cost during the descent, analysis is not performed on objective function
values, but on its derivatives along the direction of nodal line. In the modified version of the
algorithm, the initial nodal point (initial approximation) is determined on a subset of the sample
and calculations of the objective function values at the minima of the nodal lines are excluded [27].

3. DISCUSSION OF RESULTS

A comparison between the interior point algorithms and the simplex method shows that they are
at least equally efficient in terms of computational complexity. Thus, the affine scaling algorithms
A and B, considering the number of iterations, have a complexity of O(n3,1), while the solution
of the primal and dual LP problems using the simplex method has a complexities of O(n3,2m0,2)
and O(n3m0,5), respectively [15]. However, when n � m, they, are still significantly inferior to the
modified gradient descent, which has a complexity of O(n1,5m1,8) [27].

The main difference between the gradient descent along nodal straight lines and the algorithms
based on solving LP problems using the simplex method and interior point algorithms is that it
operates only with the initial data until the global minimum is found. This guarantees convergence
to the exact solution regardless of the number of iterations and simplicity of the method implemen-
tation. In each subsequent iteration, the latter uses information from the previous one contained
in the simplex table or vectors respectively, which can lead to biased estimation due to the accu-
mulation of computational errors. Nevertheless, considering this fact in the implementation, one
can achieve a negligible number of deviations, although this also increases the computational cost.

Comparison of algorithms based on computational complexity estimation in Big O notation is
necessary but insufficient. Its simplicity leads to neglecting constants, multiple minor summands,
and algorithm memory consumption. Therefore, there may be situations where two algorithms
with the same Big O have significantly different computation times, or conversely, algorithms with
different Big O have the same computation time.

3.1. Comparative Analysis of Algorithms on Model Data

For a more comprehensive evaluation, we will use the Monte Carlo method and compare the
execution times of the algorithms for 1000 experiments overm = 2, 3, . . . , 7 and n = 50, 100, . . . , 500.
Since the goal is to investigate the computational efficiency of the algorithms rather than accuracy
of the LAD-based regression model estimation, we use the standard normal distribution of random
errors ε in the generated data samples. Generation was performed using the built-in functions of the
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Fig. 1. Decimal logarithms of the ratios of computation times using LAD algorithms to the computation time
of OLS when n = 300.

Fig. 2. Decimal logarithms of the ratios of computation times using LAD algorithms to the computation time
of OLS when m = 4.

C++ programming language in the Microsoft Visual Studio 2019 environment. The computational
experiments will be conducted on a Dell G5 5587 laptop with a 6-core i7-8750H processor with a
clock frequency of up to 4.1 GHz. The accuracy for algorithm A is set to δ = 10−5.

As a result of determining the dependence of the algorithms’ execution time on the number of
observations and model parameters for the affine scaling algorithm A, we obtain t1 = 0.0001 × n3.4

with a coefficient of determination R2 = 0.96. As noted above, algorithm B is not applicable to
solving the given problem (2), and therefore it will be excluded from further comparison. The
dependencies for solving the primal and dual LP problems using the simplex method, as well as
for the modified gradient descent, are as follows t2 = 0.0004 ×m0.001n2.8, t3 = 0.0001 ×m0.6n2.7,
t4 = 0.00059 ×m2.51n1.21 [27]. For the sake of clarity, Figs. 1 and 2 present graphs of decimal log-
arithms of execution time ratios for the considered algorithms to the computation time using OLS.

As a result, it can be stated that the affine scaling algorithm A is an order of magnitude slower
than the simplex method and several orders of magnitude slower than the gradient descent.

3.2. Comparative Analysis of Algorithms on Practical Examples

Let us now consider three practical examples of regression modelling on real data. As the
exact solution of problem (1), the results obtained using the brute-force algorithm for enumerating
all nodal points were used in all the examples [15]. The results of calculation using the simplex
method and the gradient descent algorithm along nodal straight lines coincided with the brute-force
algorithm in all three examples. Thus, the simplex method and the gradient descent algorithm
found exact solutions a∗ of problem (1).
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Example 5. Let us determine the model parameters of the average economic damage caused by
fires in municipal districts (MD) of the Sverdlovsk region for the year 2012 on basis of the data
provided in the [33]. The model is defined as Ŷ = a1X1 + a2X2 + a3X3 + a4X4, where Ŷ is the
average forecast damage from fires in the current year, mln rubles; X1 = 1; X2 is the number of
buildings and structures in the MD, thsd units; X3 is the total length of roadways in the MD
territory, km; X4 is the annual fire damage from the previous year, mln rubles; a is the vector of
unknown parameters of the model; n = 58. The model is statistically significant, with a coefficient
of determination R2 = 0.68. The calculation results are given in Table 1.

Table 1. Results of coefficient parameter calculations a for Example 5

Algorithm a1 a2 a3 a4 Q(a) s d

Solution a∗ –3.822 1.403 –0.053 0.802 638.43 — —

A (δ = 10−3) –5.127 1.118 –0.042 0.847 644.90 20.0% 100.0%

A (δ = 10−4) –2.451 1.223 –0.065 0.800 642.69 17.8% 111.7%

A (δ = 10−5) –4.170 1.538 –0.053 0.794 640.76 5.0% 123.7%

A (δ = 10−6) –3.615 1.534 –0.060 0.793 639.32 7.1% 135.0%

A (δ = 10−7) –3.91 1.471 –0.057 0.804 638.45 3.6% 194.0%

A (δ = 10−8) –3.855 1.428 –0.054 0.803 638.44 1.3% 206.7%

Example 6. To assess the relative performance of central processing units (CPU), data on their
characteristics and relative performance are provided in [34]; n = 209. The machines represented
a wide range of performance and manufacturers.

The prediction of relative CPU performance was carried out using the model Ŷ = a1X1+
a2X2 + a3X3 + a4X4, where Ŷ is the estimated relative CPU performance; X1 = 1; X2 is the
main memory size = (minimum main memory size + maximum main memory size)/2; X3 is the
cache memory size; X4 is the channel bandwidth = (minimum number of channels + maximum
number of channels)/(2 × machine cycle time); a is the vector of unknown model parameters. The
model is statistically significant, with a coefficient of determination R2 = 0.89. The calculation
results are given in Table 2.

Table 2. Results of coefficient parameter calculations a for Example 6

Algorithm a1 a2 a3 a4 Q(a) s d

Solution a∗ –0.394 0.0072 0.5160 184.2 6190.5 — —

A (δ = 10−3) 7.240 0.0034 0.8684 235.5 6538.2 521.3% 100.0%

A (δ = 10−4) 0.403 0.0079 0.4549 166.8 6233.9 58.3% 112.3%

A (δ = 10−5) –4.661 0.0055 0.7103 196.7 6227.7 337.6% 122.7%

A (δ = 10−6) –1.716 0.0079 0.4730 173.1 6205.5 89.9% 167.5%

A (δ = 10−7) 1.520 0.0066 0.5205 195.1 6198.6 125.1% 192.0%

A (δ = 10−8) 1.459 0.0065 0.5394 196.7 6198.6 122.9% 208.2%

Example 7. Consider the task of modelling wheat yield in Kirkuk based on climatic and socio-
economic indicators using data from 2020 to 2022 (n = 23) [35]. We have a regression model
Ŷ = a1X1 + a2X2 + a3X3 + a4X4, where Ŷ is an estimate of wheat yield, tons/ha; X1 = 1; X2 is
the population of Kirkuk, mln ppl; X3 is the per capita gross domestic product of Iraq at 2023
prices (to account for inflation), thsd USD; X4 is the normalised vegetation index; X5 is the surface
pressure, kPa/10; X6 is the wind speed at a distance of at least 10 metres, m/s; a is the vector
of unknown parameters of the model. The model is statistically significant, with a coefficient of
determination R2 = 0.81. The results of calculations are given in Table 3.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 3 2025



276 GOLOVANOV, TYRSIN

Table 3. Results of coefficient parameter calculations a for Example 7

Algorithm a1 a2 a3 a4 a5 a6 Q(a) s d

Solution a∗ 610.2 1.918 –0.132 2.526 –62.92 4.019 5.02 — —

A (δ = 10−3) 134.8 3.366 –0.287 –5.294 –13.87 4.438 9.57 111.4% 100.0%

A (δ = 10−4) 1292.8 2.891 –0.248 1.590 –133.1 –1.828 7.20 90.6% 113.8%

A (δ = 10−5) 584.7 3.209 –0.393 –1.360 –60.30 8.597 6.84 90.0% 124.1%

A (δ = 10−6) 593.0 3.274 –0.360 –1.288 –61.15 6.882 6.67 78.4% 137.9%

A (δ = 10−7) 192.1 2.938 –0.268 –0.632 –19.86 5.056 6.11 73.8% 213.8%

A (δ = 10−8) 675.5 2.217 –0.194 1.832 –69.57 0.274 5.71 34.0% 237.9%

In Tables 1–3, the following are denoted: s is the mean value of the absolute relative errors
in calculation of the a coefficients (in %); d is the ratio of calculation time of algorithm A with
accuracy δ to the calculation time with accuracy δ0 = 10−3.

Conclusions from Examples 5–7:
— in the considered accuracy range with decreasing δ the calculation time increases by 2–2.5 times;
— the convergence speed of algorithm A to the minimum of the objective function Q(a) decreases
with increasing problem dimensionality and sample size, with the growth of m being more critical.

4. CONCLUSION

Using the affine scaling algorithms of V.I. Zorkaltsev (algorithm A) and I.I. Dikin (algorithm B)
as examples, the efficiency of interior point methods for LAD estimation of regression models was
analysed.

The analysis of the interior point algorithms A and B showed that when solving problem (1):
— their computational complexity is comparable to the simplex method, but they are slower in
terms of computation time,
— they significantly (by more than an order of magnitude) lose to the modified descent along nodal
straight lines both in terms of computational complexity and actual computation time,
— the convergence speed of algorithm A to the minimum of the objective function Q(a) decreases
with increasing problem dimensionality and data sample size, with increasing dimensionality being
more critical
— increasing the accuracy raises runtime of algorithm A, but it is less critical compared to the
dimensionality of the problem and the size of the analysed data sample.

The results indicate that algorithm A, without taking into account computational errors, is
capable of reaching an exact solution in a finite number of iterations. However, the dependence of
computation time on the given accuracy, problem dimensionality, and data sample size limits the
scope of its application for solving problems of the form (1) to the values δ � 10−8, m � 4, n � 100.

The time loss of algorithm A compared to the simplex method, despite having approximately
the same complexity, is caused by the presence of a set of almost parallel very small edges near the
minimum of the objective function, which complicates and reduces the efficiency of using barriers.

Only two algorithms for implementing interior point methods have been considered in this
article. However, since there is still no information about cardinal (by an order of magnitude or
more) improvement in the actual performance of modern algorithms, it can be argued that descent
along nodal straight lines is more efficient for calculating the parameters of linear regression models
from experimental data than interior point methods.

APPENDIX

Proof of Statement 1. The computational complexity of matrix multiplication (m×n) by (n× l)
is O(mnl), and finding the inverse using the Gauss–Jordan method for a square matrix of dimension
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(n×n) is O(n3). Let n1 = 2n; n2 = 3n+2m, then the matrix dimensions for the given problem (2)
will be: A — (n1 × n2); x — (n2 × 1); b — (n1 × 1); c — (n2 × 1). Note that when n � m in
Big O notation, the weight of the operations number n1 and n2 will be comparable. Let us define
the complexity of each step of the algorithm for solving the problem (1) reduced to a LP:

Step 1. Ax(k) is the matrix multiplication of size (n1 × n2) by (n2 × 1) and will be computed
in O(n1n2) operations. Together with the subtraction operation, the total complexity of this step
will be O(n1 + n1n2) or P1 = O(n1n2).

Step 2. The vector x is raised to a power p and a diagonal matrix is formed from it. Since
raising to p = 2 is equivalent to multiplying the number by itself, its complexity is P2 = O(n2),
which is the complexity of step due to the fact that the diagonal matrix is set by initialisation from
the resulting vector.

Step 3. Let us break it down step by step:

1) the matrix multiplication ADkA
T will be calculated in (n1n

2
2 + n2

1n2) operations;
2) the inverse of found matrix will be determined in (n3

1) operations;
3) the expression (r(k) +ADkc) in (n1n

2
2 + n1n2 + n1) operations;

4) multiplication of the resulting matrices will be performed in (n2
1) operations.

The total computational complexity will be O(n3
1 + 2n1n

2
2 + n2

1n2 + n2
1 + n1n2 + n1) or P3 =

O(n3
1) for n � m.

Step 4. The vector g(u(k)) is computed in (n1n2 + n2) operations. Then the total complexity
will be O(n2

2 + n1n2 + n2) or P4 = O(n2
2).

Step 5. The iterative transition is performed in P5 = O(n2).

Steps 2–5 are performed in a loop until a stop point is reached. Thus, the total computational
complexity of the algorithm will be:

P = P1 + (P2 + P3 + P4 + P5)× {number of iterations}
= n1n2 + (n2 + n3

1 + n2
2 + n2)× {number of iterations},

where the number of iterations is a constant depending on the given accuracy of the algorithm.

Using the Monte Carlo statistical testing method, it was found that the optimal specified solution
accuracy for a standard normal distribution of random errors δ in the analysed sample is 10−5,
due to low accuracy at 10−3 and long computation time at 10−8. Therefore, the algorithm stops
when the maximum absolute value of the vector s is less than 10−5, which allows maintaining an
acceptable level of solution accuracy regardless of the analysed sample size.

For 100 iterations with m = 2, 3, . . . , 7 and n = 50, 100, . . . , 500, on average, the algorithm will
find the solution in 5 iterations with a deviation from the exact solution by 14.3%. To take into
account the possible influence of the iterations number on the computational complexity of the
algorithm, regardless of the given solution accuracy (when n significantly exceeds the number of
iterations), let us increase the degree at n

O(P ) = O(n3
1 × {number of iterations}) � O(n3,1).

Statement 1 is proven.

Proof of Statement 2. Let us define the computational complexity of one iteration under the
condition that the given problem (2) is solved — for determining the dual estimates the matrix B
is computed in O(4n2

1n2) and the vector d is computed in O(4n1n2) operations, respectively.

Thus, the computation of the solution vector u is performed in O(n3
1 + 4n2

1n2 + n2
1 + 4n1n2) or

O(n3
1) operations. The vector s(x) will be found in O(2n2(2n1 +1)) or O(n1n2), while Φ(x) will be

found in O(3n2(2n1 + 1)) or O(n1n2) operations.
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The overall computational complexity of one iteration will be O(n3
1) or O(n3) operations. Taking

into account the possible number of iterations depending on the given solution accuracy, the method
can indeed be considered comparable to algorithm A.

Statement 2 is proven.
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